УДК 621. 833. 6

ПЛЕХАНОВ Федор Иванович доктор технических наук, профессор, директор Глазовского инженерноэкономического института (филиал Ижевского государственного технического университета)

ОВСЯННИКОВ Алексей Владимирович аспирант кафедры «Специальные инженерные науки» (Ижевский государственный технический университет)

Силовой расчет механизма восприятия момента зубчато-роликовой планетарной передачи

Ф.И. Плеханов, А.В. Овсянников

Приведен аналитический метод определения нагрузки в зонах сопряжения роликов, сателлита и дисков зубчато-роликовой планетарной передачи, основанный на решении уравнений совместности перемещений, вызванных деформацией сопрягаемых элементов механизма.

Ключевые слова: зубчато-роликовая планетарная передача, внутреннее зацепление, зона сопряжения, деформация, распределение нагрузки.

The article presents an analytical method to determine a load in the rollers, planetary pinion and disks interfaces of the gear-and-roller planetary gearing based on the solution of compatibility equations of motion caused by deformation of the mechanism mating elements.

Keywords: gear-and-roller planetary gearing, internal engagement, interface, deformation, load distribution.

Планетарные передачи с одним внутренним зацеплением колес и малой разницей в числах их зубьев (передачи K—H—V) выгодно отличаются от планетарных передач других типов простотой конструкции и высокой несущей способностью при хороших массогабаритных показателях [1]. Наиболее эффективной из них является передача K—H—V с роликовым механизмом восприятия момента (механизмом V) [2]. Движение от сателлита к тихоходному валу передается через ролики, располагаемые в отверстиях сателлита, и жестко связанные с тихоходным валом диски (щеки) (рис. 1). Диаметры указанных отверстий *D* больше диаметров роликов *d* на величину межосевого расстояния a_w . В процессе работы планетарной передачи ролики перекатываются по поверхностям отверстий сателлита и дисков, что благоприятно сказывается на коэффициенте полезного действия и прочности механизма (в аналогичных передачах с цевочным механизмом восприятия момента имеет место скольжение сопрягаемых деталей).

Для расчета на прочность роликового механизма восприятия момента следует установить величины сил, действующих в зонах сопряжения роликов с сателлитом и дисками (рис. 2).

В процессе работы передачи нагрузку воспринимает половина роликов, вторая половина работает на холостом ходу. Причем силы *P_j*, действующие на сателлит и на диски со стороны роликов, не одинаковы. Для определения указанных сил запишем уравнения связи их с перемещениями, вызванными деформацией сопрягаемых тел:

Рис. 1. Зубчато-роликовая планетарная передача К-H-V

Рис. 2. К определению сил в зонах сопряжения роликов с сателлитом и дисками механизма передачи движения

$$P_{1} = 0,5bc\delta R \sin \varphi,$$

$$------,$$

$$P_{j} = 0,5bc\delta R \sin[\varphi + \tau(j-1)],$$

$$------,$$

$$P_{n/2} = 0,5bc\delta R \sin[\varphi + \tau(0,5n-1)],$$

$$\sum_{j=1}^{n/2} P_{j}R \sin[\varphi + \varphi(j-1)] = T,$$

(1)

где *n* — число роликов; т — угловой шаг отверстий сателлита при равномерном их распреде-

лении по окружности радиуса $R (\tau = 2\pi/n); \delta$ элементарный угол поворота сателлита, обусловленный суммарной деформацией сопрягаемых тел; T — передаваемый одним сателлитом момент; φ — фаза взаимного положения элементов передачи ($0 \le \varphi \le \tau$); R — радиус окружности центров отверстий сателлита; b рабочая длина ролика в зоне контакта с сателлитом; c — удельная жесткость сопряжения ролик — сателлит или ролик — диск (при $b/d \le 1c \approx \approx E/4$ [3]).

Уравнения (1) записаны для передачи с одинаковой погонной нагрузкой в зонах сопряжения ролика с сателлитом и дисками механизма восприятия момента, когда суммарная толщина дисков равна длине ролика в зоне контакта с сателлитом b, что рационально с точки зрения равнопрочности элементов механизма и осевого размера передачи.

Решение системы уравнений (1) имеет следующий вид:

$$P_{j} = \frac{T \sin[\phi + \tau(j-1)]}{R \sum_{j=1}^{n/2} \sin^{2}[\phi + \tau(j-1)]}.$$
 (2)

На рис. 3 и рис. 4 приведены кривые зависимости (2) при n = 8 и n = 6, $P_j^* = P_j R / T$. Из графиков следует, что при n = 8 и $\varphi = 0$ наиболее нагруженным является сопряжение третьего ролика с цилиндрической поверхностью сателлита. При изменении фазы взаимного положения элементов планетарного механизма на угол φ , равный угловому шагу отверстий τ , максимум нагрузки переходит ко второму ролику, затем к первому и поочередно к другим роликам механизма.

При n = 6 наиболее нагруженным является второй ролик, затем максимум нагрузки переходит к первому ролику и т. д.

 $---P_{3}^{*};$

 $-P_1^*; \dots -P_2^*;$

Погрешности изготовления и монтажа передачи приводят к изменению соотношения между силами, действующими на ролики и сопрягаемые с ними детали, что следует учитывать при проектировании планетарного механизма.

Рассмотрим наиболее неблагоприятный в отношении распределения нагрузок случай, когда ролик, несущий максимальную нагрузку, имеет диаметр, больший на величину Δd диаметров остальных нагруженных роликов, а соответствующие этому ролику диаметры отверстий меньше на ΔD диаметров других отверстий меньше на ΔD диаметров других отверстий. При выполнении отверстий дисков и сателлита в сборе погрешности их расположения ΔR и $\Delta \tau$ практически не оказывают влияния на распределение нагрузок.

В соответствии с этим система уравнений (1) примет следующий вид:

$$P_{1} = k \sin \varphi,$$

$$-----,$$

$$P_{j} = k \sin[\varphi + \tau(j-1)],$$

$$P_{jm} = k \sin[\varphi + \tau(j_{m}-1)] + 0.5bc\Delta,$$

$$------,$$

$$P_{n/2} = k \sin[\varphi + \tau(0.5n-1)],$$

$$T = kR \sum_{j=1}^{n/2} \sin^{2}[\varphi + \tau(j-1)] + 0.5Rbc\Delta \sin[\varphi + \tau(j_{m}-1)],$$
(3)

где $k = 0,5bc\delta R$; $\Delta = \Delta d + |\Delta D|$; P_{jm} — сила, действующая на наиболее нагруженный ролик при заданном их числе *n*.

Отсюда

$$k = \frac{T - 0.5R\Delta bc\sin[\varphi + \tau(j_m - 1)]}{R\sum_{j=1}^{n/2} \sin^2[\varphi + \tau(j - 1)]},$$
 (4)

$$F^{*} = P_{m} \frac{R}{T} = \Delta^{*} + \frac{1 - \Delta^{*} \sin[\varphi + \tau(j_{m} - 1)]}{\sum_{j=1}^{n/2} \sin^{2}[\varphi + \tau(j - 1)]} \times (5)$$
$$\times \sin[\varphi + \tau(j_{m} - 1)],$$

где
$$\Delta^* = \frac{R\Delta bc}{2T}$$

На рис. 5 представлен график зависимости максимальной относительной силы F^* от фазы взаимного положения элементов передачи φ и относительной погрешности Δ^* при n = 6 и n = 8.

Выводы

Из выполненных расчетов и построенных по ним графиков следует, что зубчато-роликовая

передача К—H—V очень чувствительна к погрешностям изготовления роликов и сопрягаемых с ними поверхностей (Δd и ΔD). При относительной погрешности $\Delta^* = 1$ и определенных значениях фазы взаимного положения элементов передачи нагрузку несет практически один ролик.

Таким образом, при расчете сопряжения ролик — сателлит или ролик — диск на прочность следует учитывать погрешности изготовления передачи и определять нагрузку в соответствии с приведенными зависимостями.

Литература

1. Кудрявцев В.Н., Кирдяшев Ю.Н., Гинзбург Е.Г. Планетарные передачи: Справочник. Л.: Машиностроение, 1977. 563 с.

2. Пат. № 2402709, РФ, МПК F16H 1/32. Планетарная передача / Плеханов Ф.И., Веретенников Н.Д., Каркин Н.А., Казаков И.А. Опубл. 27.10.2010, бюл. № 30.

3. Плеханов Ф.И., Овсянников А.В., Казаков И.А. Экспериментальное исследование деформативности элементов планетарных передач // Научно-технические и социально-экономические проблемы регионального развития: Материалы научной конференции. Глазов, 2010. С. 76–78.

Статья поступила в редакцию 13.01.2011 г.