ЗУЗОВ Игорь Валерьевич аспирант кафедры «Колесные машины» (МГТУ им. Н.Э. Баумана) УДК 629.113

Моделирование продольного смятия передних лонжеронов кузова легкового автомобиля с учетом инициаторов деформации

И.В. Зузов

С помощью программного комплекса ANSYS LS-DYNA исследовано влияние на энергоемкость локальных концентраторов напряжений (отверстия, выштамповки и др.) Получена количественная оценка влияния каждого из перечисленных факторов.

Ключевые слова: лонжерон, инициаторы, энергоемкость, напряжение, перемещение.

The article represents the local initiators (beads, holes etc.) influence analysis using ANSYS LS-DYNA software. The quantitative estimation of each factors influence has been evaluated.

Keywords: longeron, initiators, energy capacity, stress, displacement.

В настоящее время обеспечение пассивной безопасности колесных машин (КМ) — одна из наиболее сложных и трудоемких задач, которую приходится решать при проектировании новых транспортных средств (ТС). В мире внедряются все более жесткие правила, по которым оценивается степень защиты водителя и пассажиров КМ. Кроме того, обеспечение пассивной безопасности в ряде случаев весьма дорого, так как инженерам приходится вносить многочисленные изменения в конструкцию КМ и при этом проводить испытания для проверки обеспечения пассивной безопасности.

Одним из наиболее опасных столкновений является фронтальный удар, при котором наибольший вклад в поглощение энергии вносят лонжероны автомобиля. Лонжероны представляют собой сложную тонкостенную пространственную конструкцию замкнутого профиля. По многочисленным исследованиям выявлено, что лонжерон во время удара в основном испытывает осевое сжатие, поэтому для изучения влияния отдельных геометрических особенностей (отверстия, выштамповки и т. д.) целесообразно привести модель лонжерона к модели тонкостенной трубки квадратного сечения с различными инициаторами деформации и провести расчеты при действии осевой ударной нагрузки. Целью данной работы является исследование поведения тонкостенных труб при осевом сжатии с различными конфигурациями конструкции, численная оценка энергоемкости каждого из рассмотренных случаев и анализ поведения конструкции для групп представленных инициаторов деформаций. Полученные результаты в дальнейшем будут применяться для оценки и предсказания поведения конструкций лон-

Рис. 1. Конечно-элементные модели трубки с различными инициаторами деформации:

a -без инициаторов; $\delta -$ отверстие d = 20 мм; e -отверстие d = 40 мм; e -два отверстия d = 20 мм; $\partial -$ два отверстия d = 20 мм расположены вдоль оси трубки; e -два отверстия d = 20 мм расположены вдоль оси трубки на расстоянии 30 мм друг от друга; $\mathcal{K} -$ два отверстия d = 20 мм расположены перпендикулярно оси трубки на расстоянии 10 мм друг от друга; 3 - внутренняя выштамповка r = 3,5 мм; u - внутренняя выштамповка r = 7 мм; $\kappa -$ внешняя цилиндрическая выштамповка r = 5 мм; n -двойные внешние цилиндрические выштамповки r = 5 мм на расстоянии 20 мм друг от друга; m -тройные внешние цилиндрические выштамповки r = 5 мм друг от друга; m -тройные внешние цилиндрические выштамповки r = 5 мм друг от друга; m -тройные внешние цилиндрические выштамповки r = 5 мм друг от друга; m -тройные внешние цилиндрические выштамповки r = 5 мм друг от друга; m -тройные внешние цилиндрические выштамповки r = 5 мм друг от друга; m -тройные внешние цилиндрические выштамповки r = 5 мм друг от друга; m -тройные внешние цилиндрические выштамповки r = 5 мм друг от друга; m -тройные внешние цилиндрические выштамповки r = 5 мм друг от друга; m -тройные внешние цилиндрические выштамповки r = 5 мм друг от друга друга друга друга внешние цилиндрические выштамповки r = 5 мм друг от друга друг

жеронов с учетом конструктивных факторов и инициаторов деформаций.

В данной работе были созданы конечно-элементные модели труб (КЭМ) квадратного поперечного сечения с различными инициаторами деформаций (рис. 1). При этом использовались идентичные характеристики и конфигурация сетки для всех моделей.

Расчетная схема испытания тонкостенных труб (рис. 2) состоит из недеформируемой опорной поверхности и молота массой m = 25 кг, движущегося вертикально вниз, скорость которого в момент касания с трубкой составляет 17,78 м/с. Масса молота выбрана такой, что-

Рис. 2. Расчетная схема тонкостенных труб

бы происходило неполное смятие трубки для облегчения определения энергоемкости. Модель материала трубки учитывает упрочнение.

Рис. 3. Результаты расчета трубки с различными инициаторами деформации:

a -без инициаторов; $\delta -$ отверстие d = 20 мм; e -отверстие d = 40 мм; e -два отверстия d = 20 мм; $\partial -$ два отверстия d = 20 мм расположены вдоль оси трубки; e -два отверстия d = 20 мм расположены вдоль оси трубки на расстоянии 30 мм друг от друга; m -два отверстия d = 20 мм расположены перпендикулярно оси трубки на расстоянии 10 мм друг от друга; 3 -внутренняя выштамповка r = 3,5 мм; u -внутренняя выштамповка r = 7 мм; $\kappa -$ внешняя цилиндрическая выштамповка r = 5 мм; n -двойные внешние цилиндрические выштамповки r = 5 мм на расстоянии 20 мм друг от друга; m -тройные внешние цилиндрические выштамповки r = 5 мм на расстоянии 20 мм друг от друга; m -тройные внешние цилиндрические выштамповки r = 5 мм на расстоянии 20 мм друг от друга; m -тройные внешние цилиндрические выштамповки r = 5 мм на расстоянии 20 мм друг от друга; m -тройные внешние цилиндрические выштамповки r = 5 мм на расстоянии 20 мм друг от друга; m -тройные внешние цилиндрические выштамповки r = 5 мм на расстоянии 20 мм друг от друга; m -тройные внешние цилиндрические выштамповки r = 5 мм на расстоянии 20 мм друг от друга; m -тройные внешние цилиндрические выштамповки r = 5 мм на расстоянии 20 мм друг от друга

В результате расчета оценивалась энергоемкость конструкции, представляющая собой отношение энергии, потребляемой системой, к величине, характеризующей результат функционирования данной системы, т. е. абсолютное перемещение верхних точек трубки и поведение конструкции. Выявлялись конструкции, показывающие наиболее стабильное поведение в процессе удара.

Для оценки поведения труб с различными инициаторами деформаций целесообразно разделить их на четыре группы: 1 — без ини-

циаторов (рис. 1, *a*); 2 — с инициаторами в виде отверстий (рис. 1, б); 3 — с инициаторами в виде внутренних выштамповок (рис. 1, *з*—*и*); 4 — с инициаторами в виде внешних выштамповок (рис. 1, к-м). Наименьшее перемещение, а следовательно, наибольшая энергоемкость и наиболее стабильное поведение наблюдается у трубки без каких-либо инициаторов деформаций. В то же время наименьшей энергоемкостью обладает конструкция, имеющая отверстие диаметром 40 мм (рис. 1, в, рис. 3, в). Во второй группе наибольшей энергоемкостью обладает трубка с двумя отверстиями d = 20 мм, расположенными вдоль оси, а наименьшей — трубка с двумя отверстиями d = 40 мм. Стабильное поведение показывают варианты конструкций (рис. 3, $\delta - d$). В вариантах (рис. 3, $e - \omega$) происходит закручивание и смещение поперечного сечения. Энергоемкость конструкции с двумя сквозным отверстиями (рис. 3, г), расположенными перпендикулярно оси трубки меньше энергоемкости трубки с одним сквозным отверстием (рис. 1, б) на 4,5%.В данном случае при увеличении расстояния между отверстиями энергоемкость практически не изменяется. Если те же отверстия расположены вдоль оси трубки (рис. 1, ∂), то энергоемкость увеличивается на 11,7%. При увеличении расстояния между отверстиями (рис. 1, е) энергоемкость уменьшается на 2%. В третьей группе наибольшей энергоемкостью и стабильностью обладает трубка с цилиндрической выштамповкой r = 3,5 мм (рис. 1, 3). При увеличении радиуса выштамповки в два раза энергоемкость уменьшается на 2%. В четвертой группе все варианты трубок отличаются стабильным поведением во время удара. Наибольшую энергоемкость можно выделить в варианте с двумя внешними выштамповками, расположенными на расстоянии 20 мм друг от друга. Примечательно, что энергоемкость конструкции увеличивается с добавлением выштамповок — на 2% с каждой. Ниже представлена таблица расчетных энергоемкостей труб с различными инициаторами (расчетные модели соответствуют обозначениям на рис. 1).

Таблица

Значения энергоемкости для каждой расчетной модели

Расчетная модель	Энергоемкость, Дж/м
а	28 634,82
б	20 058,91
В	18 126,63
Г	19 182,55
Д	21 712,12
e	21 245,19
Ж	19 089,88
3	20 264,64
И	19 857,31
K	19 857,31
Л	20 474,64
М	20 161,25

На основе проведенных расчетов можно сделать вывод, что наибольшей энергоемкостью и стабильным поведением при ударе обладает тонкостенная сплошная трубка. При введении в конструкцию инициаторов деформаций наибольшая энергоемкость наблюдается в случае двух отверстий d = 20 мм, расположенных вдоль оси трубки. Наименьшей энергоемкостью обладает трубка со сквозным отверстием d = 40 мм. Отверстия, расположенные перпендикулярно оси трубки, приводят к закручиванию поперечного сечения трубки и ее изгибу. Кроме того, увеличение радиуса скругления внутренних цилиндрических выштамповок приводит к изгибу трубки в процессе сжатия.

Список литературы

1. *Abramowicz W., Jones* N. Dynamic Axial Crushing of Square Tubes. Int. J. Impact Engng. 1984. Vol. 2. No. 2. Pp. 179–208.

2. *Wierzbicki T., Abramowicz W.* On the Crushing Mechanics of Thin Walled Structures. J. of Applied Mechanics. 1983. Vol. 50. Pp. 727–734.

3. *Otubushin A*. Detailed validation of non-linear finite element code using dynamic axial crushing of a square tube. Int. d. Impact Engng. 1998. Vol. 21. No. 5. Pp. 349–368.

4. *DiPaolo B.P., Monteiro P.J.M., Gronsky R.* Quasi-static axial crush response of a thin-wall, stainless steel box component. Int. J. of Solids and Structures 41, 2004. 3707–3733.

Статья поступила в редакцию 09.12.2010 г.