

ЕРМАКОВ Андрей Васильевич аспирант

ЩЕГЛОВ Георгий Александрович кандидат физико-математических наук, доцент кафедры «Аэрокосмические системы» (МГТУ им. Н.Э. Баумана)

удк 532 Численное моделирование аэроупругих колебаний кольца в дозвуковом плоскопараллельном потоке¹

А.В. Ермаков, Г.А. Щеглов

Изучена модельная задача аэроупругости, в которой профиль, считающийся упругим кольцом, взаимодействует с двумерным потоком несжимаемой среды. Параметры потока и нагрузки рассчитаны методом вихревых элементов. Показано, что упругость профиля и его условия закрепления оказывают существенное воздействие на условия формирования завихренности и характер нестационарных аэродинамических нагрузок, которые являются полигармоническими.

Ключевые слова: аэроупругость, метод вихревых элементов, взаимодействие потока и профиля.

A model problem of aeroelasticity has been studied, where the profile being considered as an elastic ring interacts with a two-dimensional flow of incompressible medium. The flow parameters and loadings are calculated using the vortex element method. It is shown that the profile elasticy and its fixing conditions have a significant influence on the vorticity generation process and parameters of unsteady aerodynamic loads, being polyharmonic.

Keywords: aeroelasticity, vortex element method, flow-structure interaction.

В связанных задачах аэроупругости, когда требуется численное моделирование переходных режимов движения упругой обтекаемой поверхности в безграничном потоке несжимаемой среды, весьма эффективным оказывается метод вихревых элементов, основанный на модели потока завихренности Лайтхилла — Чорина [1], в рамках которой генерация вихревых элементов производится на всей поверхности обтекаемого тела. Метод позволяет учитывать взаимосвязь между движением обтекаемой поверхности и процессом генерации вблизи нее завихренности.

Целью настоящей работы являлся анализ влияния местной податливости контура обтекаемого профиля на процесс вихреобразования по модели Лайтхилла – Чорина.

Постановка задачи и математическая модель

Рассматривается модельная задача. В плоскопараллельном потоке несжимаемой среды, движущейся со скоростью V_{∞} , находится замкнутый деформируемый профиль *K*, составленный из N_K прямолинейных балочных конечных элементов.

¹Работа выполнена при финансовой поддержке РФФИ (Проект № 11-08-00699-а).

Форма профиля в положении равновесия задана в неподвижной системе координат радиус-векторами узлов \mathbf{r}_i ($i=1,...,N_K$). В качестве условий закрепления используется заделка заданных узлов профиля. Рассматриваются растяжение, прогиб и угол поворота в узлах $\{q_i\} = \{u_i, w_i, \theta_i\}^{\mathsf{T}}$. Параметрами элемента являются длина L_i , изгибная жесткость EJ_i и жесткость на растяжение-сжатие EF_i .

Система уравнений динамики конечно-элементной модели имеет вид

$$[M]\{\ddot{q}\} + [C]\{q\} = \{G\},$$
(1)

где [M], [C] — глобальные матрицы массы и жесткости конструкции; {q} — результирующий вектор перемещений, вычисленный согласно [2]; {G} — вектор аэродинамических нагрузок, определяемый методом вихревых элементов. Система (1) решается методом разложения по собственным формам колебаний.

Используется модификация метода вихревых элементов, описанная в работе [3]. Применение закона Био-Савара для расчета поля скорости по известному положению \mathbf{r}_{0i} и интенсивности Γ_i системы из N_V вихревых элементов обеспечивает выполнение уравнения неразрывности. В качестве вихревого элемента используется вихрь Рэнкина [1]. Из уравнения сохранения импульса следуют уравнения для движения вихревых элементов:

$$\frac{d\mathbf{r}_{0i}}{dt} = \vec{V}(\vec{r}_{0i}, t); \quad \frac{d\Gamma_i}{dt} = 0 \qquad (i = 1, \dots, N_V). \quad (2)$$

Обтекаемый профиль моделируется панелями, вблизи которых на каждом шаге интегрирования (2) рождаются новые вихри. Интенсивность этих вихрей рассчитывают из граничных условий непротекания. В настоящей работе в качестве панелей профиля использованы отрезки между узлами ($\mathbf{r}_i + \Delta \mathbf{r}_i$; $\mathbf{r}_{i+1} + \Delta \mathbf{r}_{i+1}$). Контрольная точка \mathbf{r}_{ki} и точка рождения вихревого элемента \mathbf{r}_{b_i} выбраны на расстоянии половины длины панели от узла \vec{r}_i .

Вектор гидродинамических нагрузок $\{G\}$ имеет компоненты $\{G_i\} = \{0, -p(\mathbf{r}_{Ki}, t)L_i\mathbf{n}_i, 0\}^{\mathsf{T}}$, где \mathbf{n}_i — нормаль к панели, $p(\mathbf{r}_{Ki}, t)$ — давление, вычисленное с помощью аналога интеграла Коши — Лагранжа [4]. Рассмотрен случай, когда силы инерции, возникающие в узлах профиля, значительны по своей величине и задача аэроупругости на шаге интегрирования может быть разделена на независимые подзадачи динамики жидкости (2) и динамики конструкции (1).

Полученные результаты

Рассмотрена модельная задача об обтекании кругового профиля единичного диаметра, деформируемого как тонкое кольцо, заделанное в двух точках, потоком с единичными скоростью, плотностью и давлением «на бесконечности».

Выбор параметров расчетной схемы метода вихревых элементов производился путем решения тестовой задачи об установившемся режиме обтекания жесткого цилиндра единичного диаметра. Контур профиля был разбит на $N_K = 200$ расчетных панелей. Радиус сглаживания вихревого элемента выбран $\varepsilon = 0,004$, шаг интегрирования уравнений эволюции вихревых элементов $\Delta t = 4 \cdot 10^{-2}$. Прочие параметры расчетной схемы, описанные в работе [3], имеют следующие значения: $\varepsilon_* = 4 \cdot 10^{-3}$; $\delta = 10^{-4}$; $l_F = 8,0$.

При этих параметрах для жесткого цилиндра были получены установившиеся значения аэродинамических коэффициентов $C_{xa} = 1,196$ и $C_{ya} = 0,0$. Амплитуда колебаний подъемной силы в расчетах составила $A_{Cya} \approx 0,9$. Спектр пульсации гидродинамических сил — моногармонический с безразмерными частотами $Sh_y = 0,21 \text{ и} Sh_x \sim 0,4$. Эти данные хорошо совпадают с иизвестными экспериментальными данными в диапазоне чисел $\text{Re} \approx 10^5$ [5]: $C_{xa} \sim 1,196$; $C_{ya} = 0,0$; $A_{Cya} \approx 1,0$; $Sh_y \sim 0,21$.

При исследовании аэроупругих колебаний кольца рассмотрено четыре расчетных случая (PC) с различными безразмерными параметрами упругой системы, приведенными в табл. 1.

Таблица 1

PC	b	Ε	J	Закрепление кольца
1	0,005	$1,1.10^{9}$	$5,2 \cdot 10^{-11}$	Рис. 1, а
2	0,007	1,5.1011	$2,0.10^{-10}$	Рис. 1, а
3	0,007	$1, 1.10^{7}$	$2,0.10^{-10}$	Рис. 1, б
4	0,005	1,1·10 ⁹	5,2.10-11	Рис. 1, б

Рис. 1. Расчетные схемы

Значения безразмерных жесткостей кольца и первые три частоты собственных колебаний (в таблице указано соответствующее число Струхаля) для расчетных случаев приведены в табл. 2. Первые три собственных формы колебаний кольца, по которым проводилось разложение уравнений, для РС № 1 и РС № 2 показаны на рис. 2, *a*, для РС № 3 и РС № 4 — на рис. 2, *б*.

						,
PC	EJ	EF	ρΓ	ω ₁	ω2	ω3
1	0,057	27500	0,22	0,202	0,568	1,193
2	30,012	7,35 ·10 ⁶	0,43	3,307	9,285	19,507
3	0,014	3430	0,45	0,202	0,499	0,964
4	6,771	3,25 ·10 ⁶	0,22	6,329	15,705	30,358

Таблица 2

Как следует из данных, приведенных в табл. 2, в PC № 1 и № 3 первая собственная частота кольца близка к частоте схода вихрей с жесткого кольца. Таким образом, в двух случаях возможен рост амплитуды колебаний, обусловленный вихревым резонансом.

Для каждого случая был рассчитан переходный режим длительностью T = 400,0. Шаг интегрирования уравнений динамики кольца был выбран $\Delta \tau = 1 \cdot 10^{-6}$. Параметры расчетной схемы метода вихревых элементов не изменялись. В результате были получены зависимости от

времени для подъемной силы и лобового сопротивления кольца, графики перемещений точек кольца и визуализировано движение вихревых элементов. Для каждого расчетного случая в табл. 3 приведены установившиеся значения аэродинамических коэффициентов. Случай обтекания жесткого кольца отмечен как PC № 0.

Таблица З

РС	ω ₁	C _{xa}	Sh _y	Sh _x	Y _A	Sh _A
0	_	1,196	0,21	0,4	_	—
1	0,202	1,166	0,235	0,35 0,46	0,1067	0,020 0,088 0,166
2	3,307	1,08	0,16 0,41 1,21	0,25 0,81 1,12	0,0886	0,41
3	0,202	0,96	0,18	0,06 0,28	0,3205	0,025
4	6,329	1,196	0,21 0,75	0,06 0,41	0,0023	0,21 0,75

Как следует из данных, приведенных в табл. 3, при увеличении жесткости кольца коэффициент лобового сопротивления стремится к значению для абсолютно жесткого кольца. При уменьшении жесткости коэффициент сопротивления уменьшается. Это связано, по всей видимости, с изменением миделевого сечения деформированного кольца и с изменением условий вихреобразования на гладкой деформируемой поверхности. В случае резонанса РС № 3 коэффициент сопротивления оказывается на 20% ниже, чем у жесткого кольца. Вид вихревых следов за кольцами в момент времени t = T для расчетных случаев показан на рис. 3. Точками отмечены вихревые элементы. Вихревой след

Рис. 2. Собственные формы колебаний кольца

Машиностроение

Рис. 3. Вид вихревых следов за кольцами при t = T

для PC № 4 практически совпадает со следом за жестким профилем. В резонансных случаях след отличается от PC № 4, но более всего отличия в конфигурации вихревого следа заметны в нерезонансном PC № 2.

Эпюры максимальных амплитуд колебаний точек кольца изображены на рис. 4. Видно, что в резонансных случаях амплитуды колебаний больше, чем в нерезонансных случаях. А в случае РС № 3 максимальные амплитуды колебаний составляют более четверти радиуса кольца. Из анализа изменения амплитуды с течением времени следует, что у такого кольца в потоке наблюдаются биения.

Графики пульсаций аэродинамических сил показывают, что данные зависимости в отличие от аналогичных графиков для жесткого кольца являются полигармоническими. В табл. 3 приведены спектры частот пульсаций сил, а также спектр частот радиальных колебаний точки кольца, лежащей в зоне отрыва вихрей. Например, для PC № 2 это точка № 129 (см. рис. 4).

Из анализа спектров пульсаций аэродинамических сил следует, что в РС № 1 частота пульсаций подъемной силы (Sh = 0,235) оказалась отстроена от первой собственной частоты колебаний ($\omega = 0,202$), т. е. частота схода вихрей при обтекании упругого кольца увеличилась, и резонанс практически не проявился. Однако в спектре пульсаций поверхности кольца имеется частота, близкая к частоте биений (Sh- ω)/2 $\approx 0,0165$. Другие частоты в спектре также близки к полусуммам и полуразностям

Рис. 4. Эпюры амплитуд колебаний

частот схода вихрей и первой собственной частоты колебаний, а также к удвоенной частоте пульсаций силы сопротивления.

В резонансном случае РС № 3, отличающемся от РС № 2 условиями закрепления, частота пульсаций подъемной силы (Sh = 0,18) оказывается меньшей, чем у жесткого кольца и по своей величине ближе к первой собственной частоте ($\omega = 0,202$). В силу этого биения и имеют большую амплитуду.

В остальных расчетных случаях наблюдаются аналогичные эффекты. Наибольшее число гармоник имеют пульсации сил в РС № 2. Однако в этом случае колебания точек кольца являются моногармоническими с частотой, равной средней гармонике пульсаций подъемной силы (*Sh* = 0,41). Анализ графика радиальных перемещений точек кольца показывает, что в РС № 2 возникает режим мягкого возбуждения автоколебаний.

Выводы

При численном моделировании аэроупругих колебаний кольца в дозвуковом плоскопараллельном потоке несжимаемой среды методом вихревых элементов установлено, что упругость профиля и его условия закрепления оказывают существенное воздействие на условия формирования завихренности и, как следствие, на характер нестационарных аэродинамических нагрузок, которые оказываются полигармоническими. Причем в спектре проявляются гармоники, пропорциональные суммам и разностям частот пульсаций подъемной силы и силы сопротивления, а также первой частоте собственных колебаний кольца.

Установлено, что взаимосвязь между вихреобразованием и колебаниями кольца может оказывать существенное влияние на режим движения кольца. Например, упругое кольцо, параметры которого настроены в резонанс с частотой схода вихрей жесткого кольца, может иметь частоты вынужденных колебаний, отстроенные от резонанса за счет изменения структуры вихревого течения; у кольца, отстроенного от резонанса с частотой пульсаций подъемной силы, может возникнуть режим автоколебаний, и т. д.

Обнаруженные эффекты требуют дальнейшего изучения. Они показывают, что использование в задачах динамики конструкций, находящихся под действием ветровых нагрузок, вынуждающих сил, заданных полуэмпирическим путем на основе свойств дорожки вихрей Кармана, образующейся за жестким круговым цилиндром, может приводить к принципиально неверным результатам.

Литература

1. *Cottet G.-H., Koumoutsakos P.* Vortex Methods: Theory and Practice. Cambridge: Cambridge University Press, 2000. 320 p.

2. Расчеты машиностроительных конструкций методом конечных элементов: Справочник / под ред. В.И. Мяченкова. М.: Машиностроение, 1989. 520 с.

3. *Щеглов Г.А.* Исследование динамики опор упругого элемента, выдвигаемого в плоскопараллельный поток // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. Спец. выпуск. 2008. С. 48–58.

4. Андронов П.Р., Гувернюк С.В., Дынникова Г.Я. Вихревые методы расчета нестационарных гидродинамических нагрузок. М.: Изд-во МГУ, 2006. 184 с.

5. Ларичкин В.В. Аэродинамика цилиндрических тел и некоторые инженерные задачи экологии. Новосибирск: Изд-во НГТУ, 2006. 304 с.

Статья поступила в редакцию 24.10.2011 г.