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IIpuBenen aHanM3 MOHATHA CAaMOTOPMOXKEHMA UM M3BECTHBIX aHAIMTUYECKUX M T€OMETPU-
YeCKMX KpUTEPUEB 3TOTO sBeHN:A. [lokasaHa HEKOPPEKTHOCTb MCIOIb30BaHMs K03ddu-
LIMEHTA IIOJIE3HOTO JIEVICTBUA B KadecTBe Kpurepus. IIpeqiokeHo mccnefoBaTh ABIEHNE
CaMOTOPMO>KEHN: € MIOMOIIBIO ITapaMeTpa TOPMOXKEHMA 3BeHa, PABHOTO B3STOMY C 00part-
HBIM 3HAKOM OTHOLIEHWIO 37IEMEHTAPHBIX Pab0OT BHYTPEHHUX CUI CONMPOTVBIIEHNUS U [{BU-
Xymux cwl. Kputmdecku mpoaHanusupoBaHa M3BeCTHas KIaccUUKaLUsA CaMOTOPMO3s-
IMXCA MEXaHM3MOB, a TaK)Ke NPeIOKeH MPVHIVINAIbHO MHONM B3IVLAM Ha TaKMe MeXa-
HY3MBI, COIVIACHO KOTOPOMY OHM He OOpPasylOT OT[ETbHOTO KJIAcca, IOCKO/IbKY SIBIICHNE
CaMOTOPMOJKEHMA TIPUCYIE BCEM MEXaHM3MaM IIPY OIpENENEeHHbIX TeOMETPUIECKUX Ma-
pamerpax M ycmoBusx ABioKeHus. OmmcaHbl BbICOK03(EKTUBHBIE KOHCTPYKLIMU CaMO-
TOPMO3SLINXCS MexaHu3MoB. Ha mpuMepe nymHapudeckoi 3y64aroit epefadn mokasaHo
JICIIO/Ib30BaHMe BEPOATHOCTHOTO METOJA OTIPE/Ie/IEHNsA 3allaca CAMOTOPMOXKEHM .

KnroueBble crtoBa: aHaIUTUIECKUE U reoMeTpm4ecKkue KpuTepmum, CaMOTOpMOXXEHNE, KpU-
TepI/IﬁI CaMOTOPMOJKE€H, 3aIlIaC CAMOTOPMOJKEHVIA, BepOHTHOCTHbIﬂ METO[.

Self-braking concept and analytical and geometrical criteria of this phenomenon are ana-
lyzed, unreasonableness of efficiency application as a criterion is shown. It’s proposed to re-
search self-braking phenomenon based on link braking parameter. The known classification
of self-braking mechanisms is presented. Probabilistic method application for self-braking
allowance determination is illustrated on spur gear.

Keywords: analytic and geometric criteria, self-braking, self-braking criteria, self-braking al-
lowance, probabilistic method.

The purpose of the article is self-braking criteria
validity and practical usage analysis.

The term «braking» originates from Greek tor-
mos, which literally means the hole to insert a nail
to prevent wheel rotation. Currently term «a
break» relates to a unit which decreases velocity or
provides stoppage of the machine [1]. Break blocks
the mechanism at necessary mode of operation, for
example, prevents mechanism motion due to the
applied weight.

Blocking may be obtained without any special
device just by providing excessive friction in any of
kinematic pairs preventing further motion of the

mechanism. This phenomenon was named self-
breaking. It is well known and widely used in worm
and screw gears. Different definitions and phenom-
enon criteria are met so far in the literature.

In N.L. Levitsky’s manual [2] self-breaking is de-
scribed as a case when friction force in a prismatic
kinematic pair doesn’t allow «relative motion of a
link in the desired direction independently of the
magnitude of the resultant moving force». Self-
breaking condition of a kinematic pair is expressed
by inequality

a; SG,], (1)
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where a; is angle between driving force, applied to
i-link, and the normal to the guide; 6;; is angle be-
tween reaction acting on link i from link j and the
normal to the guide.

Inequality (1) means that self-breaking takes
place when line of action of the driving force lies
inside friction angle. The deviation angle of this
line relatively to the normal is the factor of self-
braking.

In manual [3] self-braking phenomenon is illus-
trated in double wedge mechanism. Conditions for
possibility of forward and reverse run are given in
Table 1. Reverse run is impossible if angle of the
wedge is y<20 [3]. It is also mentioned that re-
verse run is possible if to make the force applied to
the input driving by changing its direction to the
opposite. If driving forces are applied to both —
input and output links — it is wrong to classify this
situation as reverse run mode.

The mode of motion when both input and out-
put links are driving is a distinctive feature of self-
breaking mechanisms. V.L. Veits names this mode
as «break release» operation [4]. In this case break
release coefficient W;,;; serves as a factor of loss. It
is expressed as the ratio of powers at the input i
and output i + 1 links and differs from efficiency
coefticient by opposite sign: Wiy1; =Nty

Typically self-braking is used to prevent reverse
run of a mechanism. Though, as V.L. Veits noted,
self-braking mechanisms may exist at any moment
direction, but their practical usage is questionable
[4]. A.K. Musatov is even more strict: «In this case
the mechanism is no operable and has no applica-
tion» [3].

A L Turpayev names braking action at forward
run as seizure of improperly designed mechanism.
He names a mechanism as self-breaking «if it may
start motion by the driving (input) link, any at-
tempt to start mechanism by driven (output) link
causes braking action, the force flow acts at the
frame (housing)» [5].

Table 1
Mechanism working mode vs. wedge angle

Wedge angle y Forward run Reverse run
Y<26 Possible Impossible
o Possible Possible
20<y<—-26
2
Impossible Possible
Y > g -20 P

Profesor A.F. Krainev defines self-braking as «a
condition at which due to friction force relative
motion of the links cannot start independently of
the magnitude of the driving force» [1]. This defi-
nition has two distinctive features. First, term «self-
braking» is applied to define the condition instead
of the phenomenon. Second, any mechanism
blocked from motion by some external friction
mechanism may correspond to the definition.
Relative motion of the mechanism links cannot
start due to friction, but friction forces do not ap-
pear in kinematic pairs of the mechanism. They are
the result of interaction with the external friction
mechanism.

Some preliminary conclusions on self-braking
features of one degree of freedom mechanisms may
be done based on the given references:

» self-braking means the fact that mechanism
cannot start motion in one of the directions due to
the force of any magnitude even if there is no re-
sisting friction;

» self-braking emerges due to high friction in
kinematic pairs;

* when self-braking takes place the condition
0<n<1 isn’t obtained, formally calculated efti-
ciency is negative;

» self-braking may be overcome by mutual cor-
related action of input and output links when both
of them become driving links; this mode is named
break release, mode of accord forces;

» self-braking may be useful at reverse run, at
forward run it is usually inacceptable.

Comparison of given definitions shows sub-
stantial differences of the authors’ approaches to
the phenomenon. The differences are connected
with the views on self-braking phenomenon con-
sidered as:

* case, condition or effect; taking place in mech-
anisms or kinematic pairs;

* depending on the direction of driving force or
links geometry;

* whether its criteria are angle of driving force
vector relatively to the normal and the efficiency of
the corresponding motion mode.

Differences of the definitions given in the refer-
ences presented show that the notion of self-braking
isn’t established yet due to insufficient phenomenon
research. Self-braking notion includes two phenom-
ena: slowness of motion and retention at the state of
rest. They may take place due to internal and exter-
nal forces acting on the mechanism. These phenom-
ena should be analyzed separately for complete de-
scription of self-braking effect.



14 M3BECTH BbICIIVIX YUYEBHBIX 3ABENEHUI. MAITMHOCTPOEHMUE

#2 [683] 2017

Let’s name a mechanism as self-braking if slow-
down is due to internal, relatively to the mecha-
nism, forces acting independently of the magnitude
of driving forces. Let’s differ self-braking of mo-
tion, considered is slowdown, and self-braking of
standstill considered as retaining in this condition.
In other words, self-breaking is mechanism slow-
down exceptionally due to friction in its kinematic
pairs independently of the driving forces.

This definition specifies the entity of self-
braking phenomenon which takes place due to the
internal friction forces in the mechanism. At
standstill condition possible work of internal fric-
tion forces equals the work of driving forces (inde-
pendently of their magnitude). At self-braking
mode work of internal friction forces exceeds the
work of driving forces that leads to mechanisms
slowdown up to its stoppage.

Both self-braking definitions and its criteria
presented in the references differ. Two groups of
criteria may be allocated. For the first group, the
factor describing self-braking is the position of the
total force relatively to the pressure angle in the
prismatic pair, or cone of friction in the revolute
pair. These criteria may be named geometrical.
Self-braking in the second group is defined by the
value of efficiency coefficient of the corresponding
mode of motion, typically reverse run. These crite-
ria may be named analytical. Formal status of the
analytical criteria is more applicable for calcula-
tion, mainly performed by a computer, but it lacks
physical meaning. In the book [3] it is mentioned
that for a mechanism in the state of self-breaking
efficiency coefficient is of no physical sense as the
mechanism is motionless and no work is done.

For a long time it was considered that forward
run efficiency of self-breaking mechanisms is less
than 50 %. Unfortunately this statement is still met
in the manuals, and there are attempts to prove it
[6]. In fact, in 1935 V.V. Dobrovolsky proved pos-
sibility, on principle, of self-breaking with the for-
ward run efficiency greater 50 %. He also men-
tioned the nature of the mistake: at the reverse run
work of harmful resistance forces was assumed
equal or less then the work of the same forces at the
forward run. This statement isn’t true for all mech-
anisms [7]. The author considered the negative
value of the of efficiency coefficient n<0as the
indicator of self-braking. This result is of no physi-
cal meaning [7].

V.V. Dobrovolsky warned against another mis-
take that may contain danger. If 11<0.5, it doesn’t
mean automatically that the machine is self-

braking. This warning is still timely. In 52 years
after professor V.V. Dobrovolsky published his
article [7] one may find in «Vestnick Machi-
nostroyeniya» (Machine Building Newsletter) the
following [8]: «... in self-braking mechanisms
N <0.5; if self-baking is undesirable and the mech-
anism to be used as reversible the necessary condi-
tion is M>0.5». It is also stated referring to
V.I Panjukhin [9] that similar conclusions are
made for other self-braking mechanisms, though
the article mentioned deals with self-braking gear
with high efficiency coefficient.

In 1956 A.P. Metral and 1. Le Ber developed
graphical method to specify efficiency of higher
kinematic pairs [10]. The method may be applied
to specify self-braking condition of planar mecha-
nisms. The method practically is applied to cam
mechanisms and the possibility of its application to
gearings with parallel axes is considered.

Self-braking gear with parallel axes was pro-
posed by A. Roano (Switzerland) [11] in 1958. Self-
baking condition was defined by the position of
engagement total force which is the geometry sum
of normal component and engagement sliding fric-
tion force. Thus, the author used geometrical self-
braking criterion.

From the comparison of geometrical self-
braking criterion, based on the position of driving
force action line relatively to the angle or cone of
friction, and analytical, based on the efficiency val-
ue, if follows that the advantage of the first is visu-
alization, and of the second — convenience of us-
age, especially for computerized analysis.

Worm gear and screw-and-nut gear were the
first self-braking gear mechanisms. They found
wide application in different machines and instru-
ments due to combined functions of motion
transmission and automatic braking when the en-
gine is off.

However worm gear has substantial shortcom-
ings: direct run low efficiency, it needs antifriction
lubrication, as a rule has low load bearing capability.
Its application is limited: «Worm gear of load-lifting
machines can’t replace the brake» [12, article 142].
Article 135 of the document is less strict: «One of
the brakes of manually actuated lifting mechanisms
may be replaced by self-braking gear» [12].

Thus, the main goals of further development of
self-braking mechanisms are substantial increase of
forward run efficiency and evaluation of self-
braking reliability.

Twin-worm gear proposed in 1961 by
L.B. Popper (Israel) [13] was one of the first self-
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braking mechanisms with high efficiency. It pro-
vides two options of self-braking mode depending
on helix angle.

Research provided by N.S. Munster [14] on
method [10] implementation to obtain efficiency of
gearing with parallel axes proved principal feasibil-
ity of making this gear self-braking provided for-
ward run high efficiency. Also it was found that the
two options of self-braking mode are feasible, they
are similar to those of twin-worm gear.

In I.D. Howel’'s (USA) gear [15] two worms
with different helix angles are engaged, their axes
are parallel and the engagement is beyond the pitch
point. Parallel axes design eliminates typical for
twin-worm poor adaptability to manufacture and
excludes axial load in case of herringbone worms.
The author also mentions that the two self-braking
options are possible.

AL Turpayev proposed to subdivide existing
diversity of self-braking mechanisms into three
groups based on «structural and design concepts
differences, efficiency range» [5]. The first group
form mechanisms with permanent (elementary)
structure, they are listed in the items 1-3 of his
classification. Items 4-6 correspond to mecha-
nisms with efficiency of forward run m>0.5. In
this case wedge mechanisms appeared simultane-
ously in two classification categories as their effi-
ciency is either 1> 0.5 or 1 <0.5 depending of the
wedge sharpening. Gear drive with parallel axis
(item 6) depending on geometry characteristics
may also have m>0.5 or n<0.5. The second
group consists of mechanisms with variable struc-
ture — complex (or composite). It includes clutch-
es, complex screw mechanisms and lifting-and-
transport machines brakes (item 12). The third
group (items 13-15) is two-stage mechanisms
«formed of two independent mechanisms, one of
which is typically ball-screw (or roll-screw) mech-
anism» [5]. In item 14 automatic brake is the sec-
ond independent mechanism.

Inner contradiction of the mentioned classifica-
tion reflects the fact that self-braking mechanism
which performs driving and braking functions
contains features of both. Reference of the same
mechanism to different classification groups indi-
cates that self-braking mechanisms do not form
separate class of devices. It is more correct to con-
sider conditions at which a particular mechanism
becomes self-braking one.

Analytical expressions to define self-braking
condition for spur involute gearing taking into ac-
count friction at bearing support and engagement

rolling friction were obtained by T.G. Iskhakov in
1969 [16]. In the same year S. Botther and G. Zirig
undertook a similar study of spur gearing consider-
ing friction at bearing support [17]. They come to
the conclusion that spur gearing with fixed axes
and traditional geometry can’t be self-braking.

A chapter in V.L. Veits’s book [4] is dedicated
to dynamics of machine assembly. It contains self-
braking and brake release notions, formulas ex-
pressing losses for a set of gears. Thus, for twin-
worm loss characteristics are defined by:

siny; Sin(Yz‘H +9*)_

hitl = 3 2
Miist sinyiy sin(yi+e) @
siny;,, sin(yi—0’
Ni+1,i = Mit1,i = Vil 3 ( ) > (3)
siny; 31n<y,-+1—6 )
where 0" =arctan (fy/1+tan®a, cos>y) — re-

duced angle of friction.
It follows from expression (3), that the condi-
tion of reverse run self-braking is

k=0"/y;, 21,

where «k; > 1 may be considered as self-braking
assurance factor» [4].

From (3) B.L. Veits comes to a conclusion: «Sei-
zure at brake release mode excluding any motion at
any external moment (the so-called second order
self-braking) takes place upon the condition

ky=0"/yin 21,

where k, >1 — self-braking assurance coeffici-
ent» [4].

Paying attention to similarity of expressions (2)
and (3), instead of three loss characteristics used
let’s introduce the following one: braking parame-
ter of i-link standstill 19 as opposite to the ratio of
elementary works of internal resistance dA; and
OA; of driving forces:

10 =—(3AI" /8AY). (4)

Let’s obtain the range of this factor. As elemen-
tary works in the numerator and denominator of
ratio (4) are of different signs, the ratio is always
negative. Thus, parameter 1) is always positive.
Equality of this parameter to zero is impossible as
resistance to motion in kinematic pairs always ex-
ists and the numerator of (4) is never zero. At the
same time resistance forces elementary work at
standstill condition can’t exceed the work of driv-
ing forces, thus numerator of this expression can’t
be greater than the denominator. Thus, standstill
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braking parameter may vary within the limits
0<1? <1. While calculating resistance force work,
formal value of upper limit of standstill braking
parameter, characterizing its assurance #; =10 —1,
may be obtained substituting real value of force
friction by its maximal value expressed in accord-
ance with Amonton’s law. The greater standstill
braking parameter (exceeding 1), the greater is the
assurance value.

Thus, for a given state of mechanism the link
providing braking is the one for which standstill
braking parameter complies with 10 >1 inde-
pendently of its position and driving force magni-
tude. Existence of braking link in a mechanism
makes the whole mechanism self-braking for given
mode of operation.

In accordance to standstill braking parameter
let’s introduce braking parameter of i-link motion
as opposite to the ratio of internal resistance forces
A; and driving forces works A;:

T =—(A7 1 A)).

This parameter differs from similar expres-
sion (4) by the following: works at the final dis-
placement are being calculated instead of elemen-
tary works, the interval of integration should be
rather great; while calculating friction forces work
standstill friction coefficients are being replaced by
motion friction coefficients.

Deterministic approach to important initial pa-
rameter — sliding friction coefficient — is typical
for the known methods of self-braking gear analy-
sis. It means that a gear drive designed in this way
provides workability at forward run and braking
mode at reverse run for given interval range of fric-
tion coefficient. Meanwhile this coefficient is a
random value, thus all dependencies containing it
are probabilistic.

Based on probability method let’s evaluate self-
braking capability of cylindrical gearing consisting
of pinion and wheel. For this purpose let’s find the
value of helix angle ; of the pinion, which pro-
vides self-braking for a given probability value P.
Let’s introduce supplementary function B [9]:

B(f3By)=sinPs %+ !
where f is sliding friction coefficient of engage-
ment; 3 is helix angle at base circumference.

Let’s consider function B (5) as a function of a
random value f. Let’s assume that random value is
in accordance with normal law of distribution, it
has expectancy M(f) = f, and mean-square devia-

(5)

cos: Py

tion o(f). To find the necessary angle let’s expand
function B in a Taylor series in accordance with
D.N. Reshetov’s method [18] leaving the first two

items:
. , 1 1
B(f;Bh):SIHBb E{'m—

sin Bb

b (g,
02 1+ fO
\' cos?P,

Then angle Bp corresponding to given probability is
Bp =arctan| M(B)—upo(B)], (6)

where M(B) is mathematical expectation of B func-
tion.

1 1
—t—, (7)
fo2 cos® 3,

where up is normal distribution quantile; o(B) is
mean quadratic deviation of B function,

M (B)=sinp,

max f —min f

1
6f2 11+
fo\/ cos® 3,

For geometry analysis of cylindrical self-braking
gearing pinion helix angle at reverse run is as-
sumed greater then angle 3 by Ap:

AB =B, —Bp. 9)

If AP increases, braking reliability also increases
due to some angle allowance.

In a similar way the expression for breaking al-
lowance t may be made linear. Considering only
sliding friction it takes the form of

o(B) =sinf,

(8)

tan Oy

os Py

where oy, is profile angle at the end section on the
circumference of arbitrary radius r,; .
Then braking allowance is defined by

tano
Ty

cosfy,

tan Olyy

cosPy

t(f3013Bs) = fo +(f-fo)

Pmaxf;minf). (10)

Let’s illustrate the dependencies by numerical
example. Let minf=0.076; maxf=0.124;
fo=0.1. The task is to evaluate braking margin
assuming probability P = 0.99.
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Pinion helix angle B, (a), helix allowance AP (b) and
braking allowance ¢ (c) dependencies on probability P

For standard wheel profile angle o, = 20° at
normal cross-section helix angle in accordance
with self-braking condition [9] must be less than
82°50". Taking B,, = 82° [, = 68°31". Based on
self-braking condition Byl =86°26". Let’s assume
B,1 =86°30". In accordance with (7) and (8) ex-
pectation and mean square deviation of B function
are: M(B) = 9.646; 6(B) =0.718.

Probability P = 0.99 corresponds to up =
= -2.326 [18], then in accordance with (6) helix
angle Bp = 84°57, that provides self-braking for
given probability. Difference between this angle
and the assumed value of f3,, is obtained from (9):
AB = 1°33".

Angle o, = 81°04' corresponds to the accept-
ed value 3,,. Braking allowance corresponding to
given probability is obtained from (10): t = 1.413.
Similar calculation results for different probabili-
ties are given in Table 2, corresponding diagrams
in Figure. From the diagrams it is visible that if
necessary probability increases, Pp increases. It
also leads to decrease of difference AP and braking
allowance t.
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0.9990 -3.090 85°11" 1°19' 1.307
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CONCLUSIONS

1. Self-braking mechanisms form no separate
class of mechanism; self-braking phenomenon may
take place in any mechanism provided specific
characteristics of mechanism and kinematic pairs
operating conditions.

2. Self-braking criteria are subdivided to geo-
metrical and analytical. The first are obvious, the
second are applicable for computation.

3. Efficiency coefficient can’t be neither the cri-
terion of given motion mode self-braking, nor used
for reliability estimation for the lack of physical
meaning in the self-braking process. The value op-
posite to the ratio of elementary works of internal
resistance forces and driving forces may be consid-
ered a correct characteristic of link braking.

4. Self-braking criterion must consider distribu-
tion law of friction coefficient as random one. Self-
braking reliability evaluation has probability pat-
tern.
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