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Приведен анализ понятия самоторможения и известных аналитических и геометри-
ческих критериев этого явления. Показана некорректность использования коэффи-
циента полезного действия в качестве критерия. Предложено исследовать явление 
самоторможения с помощью параметра торможения звена, равного взятому с обрат-
ным знаком отношению элементарных работ внутренних сил сопротивления и дви-
жущих сил. Критически проанализирована известная классификация самотормозя-
щихся механизмов, а также предложен принципиально иной взгляд на такие меха-
низмы, согласно которому они не образуют отдельного класса, поскольку явление 
самоторможения присуще всем механизмам при определенных геометрических па-
раметрах и условиях движения. Описаны высокоэффективные конструкции само-
тормозящихся механизмов. На примере цилиндрической зубчатой передачи показано 
использование вероятностного метода определения запаса самоторможения. 
Ключевые слова: аналитические и геометрические критерии, самоторможение, кри-
терий самоторможения, запас самоторможения, вероятностный метод. 

Self-braking concept and analytical and geometrical criteria of this phenomenon are ana-
lyzed, unreasonableness of efficiency application as a criterion is shown. It’s proposed to re-
search self-braking phenomenon based on link braking parameter. The known classification 
of self-braking mechanisms is presented. Probabilistic method application for self-braking 
allowance determination is illustrated on spur gear. 
Keywords: analytic and geometric criteria, self-braking, self-braking criteria, self-braking al-
lowance, probabilistic method. 

The purpose of the article is self-braking criteria 
validity and practical usage analysis. 

The term «braking» originates from Greek tor-
mos, which literally means the hole to insert a nail 
to prevent wheel rotation. Currently term «a 
break» relates to a unit which decreases velocity or 
provides stoppage of the machine [1]. Break blocks 
the mechanism at necessary mode of operation, for 
example, prevents mechanism motion due to the 
applied weight. 

Blocking may be obtained without any special 
device just by providing excessive friction in any of 
kinematic pairs preventing further motion of the 

mechanism. This phenomenon was named self-
breaking. It is well known and widely used in worm 
and screw gears. Different definitions and phenom-
enon criteria are met so far in the literature. 

In N.I. Levitsky’s manual [2] self-breaking is de-
scribed as a case when friction force in a prismatic 
kinematic pair doesn’t allow «relative motion of a 
link in the desired direction independently of the 
magnitude of the resultant moving force». Self-
breaking condition of a kinematic pair is expressed 
by inequality 

   i ija ,
 

(1) 
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where ai is angle between driving force, applied to 
i-link, and the normal to the guide; ij  is angle be-
tween reaction acting on link i from link j and the 
normal to the guide. 

Inequality (1) means that self-breaking takes 
place when line of action of the driving force lies 
inside friction angle. The deviation angle of this 
line relatively to the normal is the factor of self-
braking. 

In manual [3] self-braking phenomenon is illus-
trated in double wedge mechanism. Conditions for 
possibility of forward and reverse run are given in 
Table 1. Reverse run is impossible if angle of the 
wedge is   2  [3]. It is also mentioned that re-
verse run is possible if to make the force applied to 
the input driving by changing its direction to the 
opposite. If driving forces are applied to both — 
input and output links — it is wrong to classify this 
situation as reverse run mode. 

The mode of motion when both input and out-
put links are driving is a distinctive feature of self-
breaking mechanisms. V.L. Veits names this mode 
as «break release» operation [4]. In this case break 
release coefficient  1,i i  serves as a factor of loss. It 
is expressed as the ratio of powers at the input i 
and output i + 1 links and differs from efficiency 
coefficient by opposite sign:    1, 1, .i i i i  

Typically self-braking is used to prevent reverse 
run of a mechanism. Though, as V.L. Veits noted, 
self-braking mechanisms may exist at any moment 
direction, but their practical usage is questionable 
[4]. A.K. Musatov is even more strict: «In this case 
the mechanism is no operable and has no applica-
tion» [3]. 

A.I. Turpayev names braking action at forward 
run as seizure of improperly designed mechanism. 
He names a mechanism as self-breaking «if it may 
start motion by the driving (input) link, any at-
tempt to start mechanism by driven (output) link 
causes braking action, the force flow acts at the 
frame (housing)» [5]. 

Profesor A.F. Krainev defines self-braking as «a 
condition at which due to friction force relative 
motion of the links cannot start independently of 
the magnitude of the driving force» [1]. This defi-
nition has two distinctive features. First, term «self-
braking» is applied to define the condition instead 
of the phenomenon. Second, any mechanism 
blocked from motion by some external friction 
mechanism may correspond to the definition. 
Relative motion of the mechanism links cannot 
start due to friction, but friction forces do not ap-
pear in kinematic pairs of the mechanism. They are 
the result of interaction with the external friction 
mechanism. 

Some preliminary conclusions on self-braking 
features of one degree of freedom mechanisms may 
be done based on the given references: 

• self-braking means the fact that mechanism 
cannot start motion in one of the directions due to 
the force of any magnitude even if there is no re-
sisting friction; 

• self-braking emerges due to high friction in 
kinematic pairs; 

• when self-braking takes place the condition 
  0 1  isn’t obtained, formally calculated effi-

ciency is negative; 
• self-braking may be overcome by mutual cor-

related action of input and output links when both 
of them become driving links; this mode is named 
break release, mode of accord forces; 

• self-braking may be useful at reverse run, at 
forward run it is usually inacceptable. 

Comparison of given definitions shows sub-
stantial differences of the authors’ approaches to 
the phenomenon. The differences are connected 
with the views on self-braking phenomenon con-
sidered as: 

• case, condition or effect; taking place in mech-
anisms or kinematic pairs; 

• depending on the direction of driving force or 
links geometry; 

• whether its criteria are angle of driving force 
vector relatively to the normal and the efficiency of 
the corresponding motion mode. 

Differences of the definitions given in the refer-
ences presented show that the notion of self-braking 
isn’t established yet due to insufficient phenomenon 
research. Self-braking notion includes two phenom-
ena: slowness of motion and retention at the state of 
rest. They may take place due to internal and exter-
nal forces acting on the mechanism. These phenom-
ena should be analyzed separately for complete de-
scription of self-braking effect. 

Table 1 
Mechanism working mode vs. wedge angle 

Wedge angle  Forward run Reverse run 

  2  Possible Impossible 

     2 2
2

 
Possible Possible 

   2
2

 
Impossible Possible 
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Let’s name a mechanism as self-braking if slow-
down is due to internal, relatively to the mecha-
nism, forces acting independently of the magnitude 
of driving forces. Let’s differ self-braking of mo-
tion, considered is slowdown, and self-braking of 
standstill considered as retaining in this condition. 
In other words, self-breaking is mechanism slow-
down exceptionally due to friction in its kinematic 
pairs independently of the driving forces. 

This definition specifies the entity of self-
braking phenomenon which takes place due to the 
internal friction forces in the mechanism. At 
standstill condition possible work of internal fric-
tion forces equals the work of driving forces (inde-
pendently of their magnitude). At self-braking 
mode work of internal friction forces exceeds the 
work of driving forces that leads to mechanisms 
slowdown up to its stoppage. 

Both self-braking definitions and its criteria 
presented in the references differ. Two groups of 
criteria may be allocated. For the first group, the 
factor describing self-braking is the position of the 
total force relatively to the pressure angle in the 
prismatic pair, or cone of friction in the revolute 
pair. These criteria may be named geometrical. 
Self-braking in the second group is defined by the 
value of efficiency coefficient of the corresponding 
mode of motion, typically reverse run. These crite-
ria may be named analytical. Formal status of the 
analytical criteria is more applicable for calcula-
tion, mainly performed by a computer, but it lacks 
physical meaning. In the book [3] it is mentioned 
that for a mechanism in the state of self-breaking 
efficiency coefficient is of no physical sense as the 
mechanism is motionless and no work is done. 

For a long time it was considered that forward 
run efficiency of self-breaking mechanisms is less 
than 50 %. Unfortunately this statement is still met 
in the manuals, and there are attempts to prove it 
[6]. In fact, in 1935 V.V. Dobrovolsky proved pos-
sibility, on principle, of self-breaking with the for-
ward run efficiency greater 50 %. He also men-
tioned the nature of the mistake: at the reverse run 
work of harmful resistance forces was assumed 
equal or less then the work of the same forces at the 
forward run. This statement isn’t true for all mech-
anisms [7]. The author considered the negative 
value of the of efficiency coefficient  0 as the 
indicator of self-braking. This result is of no physi-
cal meaning [7]. 

V.V. Dobrovolsky warned against another mis-
take that may contain danger. If  0.5 , it doesn’t 
mean automatically that the machine is self-

braking. This warning is still timely. In 52 years 
after professor V.V. Dobrovolsky published his 
article [7] one may find in «Vestnick Machi-
nostroyeniya» (Machine Building Newsletter) the 
following [8]: «… in self-braking mechanisms 
 0.5;  if self-baking is undesirable and the mech-
anism to be used as reversible the necessary condi-
tion is   0.5 ». It is also stated referring to 
V.I. Panjukhin [9] that similar conclusions are 
made for other self-braking mechanisms, though 
the article mentioned deals with self-braking gear 
with high efficiency coefficient. 

In 1956 A.P. Metral and I. Le Ber developed 
graphical method to specify efficiency of higher 
kinematic pairs [10]. The method may be applied 
to specify self-braking condition of planar mecha-
nisms. The method practically is applied to cam 
mechanisms and the possibility of its application to 
gearings with parallel axes is considered. 

Self-braking gear with parallel axes was pro-
posed by A. Roano (Switzerland) [11] in 1958. Self-
baking condition was defined by the position of 
engagement total force which is the geometry sum 
of normal component and engagement sliding fric-
tion force. Thus, the author used geometrical self-
braking criterion. 

From the comparison of geometrical self-
braking criterion, based on the position of driving 
force action line relatively to the angle or cone of 
friction, and analytical, based on the efficiency val-
ue, if follows that the advantage of the first is visu-
alization, and of the second — convenience of us-
age, especially for computerized analysis. 

Worm gear and screw-and-nut gear were the 
first self-braking gear mechanisms. They found 
wide application in different machines and instru-
ments due to combined functions of motion 
transmission and automatic braking when the en-
gine is off. 

However worm gear has substantial shortcom-
ings: direct run low efficiency, it needs antifriction 
lubrication, as a rule has low load bearing capability. 
Its application is limited: «Worm gear of load-lifting 
machines can’t replace the brake» [12, article 142]. 
Article 135 of the document is less strict: «One of 
the brakes of manually actuated lifting mechanisms 
may be replaced by self-braking gear» [12]. 

Thus, the main goals of further development of 
self-braking mechanisms are substantial increase of 
forward run efficiency and evaluation of self-
braking reliability. 

Twin-worm gear proposed in 1961 by 
I.B. Popper (Israel) [13] was one of the first self-
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braking mechanisms with high efficiency. It pro-
vides two options of self-braking mode depending 
on helix angle. 

Research provided by N.S. Munster [14] on 
method [10] implementation to obtain efficiency of 
gearing with parallel axes proved principal feasibil-
ity of making this gear self-braking provided for-
ward run high efficiency. Also it was found that the 
two options of self-braking mode are feasible, they 
are similar to those of twin-worm gear. 

In I.D. Howel’s (USA) gear [15] two worms 
with different helix angles are engaged, their axes 
are parallel and the engagement is beyond the pitch 
point. Parallel axes design eliminates typical for 
twin-worm poor adaptability to manufacture and 
excludes axial load in case of herringbone worms. 
The author also mentions that the two self-braking 
options are possible. 

A.I. Turpayev proposed to subdivide existing 
diversity of self-braking mechanisms into three 
groups based on «structural and design concepts 
differences, efficiency range» [5]. The first group 
form mechanisms with permanent (elementary) 
structure, they are listed in the items 1–3 of his 
classification. Items 4–6 correspond to mecha-
nisms with efficiency of forward run   0.5.  In 
this case wedge mechanisms appeared simultane-
ously in two classification categories as their effi-
ciency is either   0.5  or  0.5  depending of the 
wedge sharpening. Gear drive with parallel axis 
(item 6) depending on geometry characteristics 
may also have   0.5  or  0.5.  The second 
group consists of mechanisms with variable struc-
ture — complex (or composite). It includes clutch-
es, complex screw mechanisms and lifting-and-
transport machines brakes (item 12). The third 
group (items 13–15) is two-stage mechanisms 
«formed of two independent mechanisms, one of 
which is typically ball-screw (or roll-screw) mech-
anism» [5]. In item 14 automatic brake is the sec-
ond independent mechanism. 

Inner contradiction of the mentioned classifica-
tion reflects the fact that self-braking mechanism 
which performs driving and braking functions 
contains features of both. Reference of the same 
mechanism to different classification groups indi-
cates that self-braking mechanisms do not form 
separate class of devices. It is more correct to con-
sider conditions at which a particular mechanism 
becomes self-braking one. 

Analytical expressions to define self-braking 
condition for spur involute gearing taking into ac-
count friction at bearing support and engagement 

rolling friction were obtained by T.G. Iskhakov in 
1969 [16]. In the same year S. Botther and G. Zirig 
undertook a similar study of spur gearing consider-
ing friction at bearing support [17]. They come to 
the conclusion that spur gearing with fixed axes 
and traditional geometry can’t be self-braking.  

A chapter in V.L. Veits’s book [4] is dedicated 
to dynamics of machine assembly. It contains self-
braking and brake release notions, formulas ex-
pressing losses for a set of gears. Thus, for twin-
worm loss characteristics are defined by: 
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where     * 2 2arctan ( 1 tan cos )xf  — re-
duced angle of friction.  

It follows from expression (3), that the condi-
tion of reverse run self-braking is 
    *

1 / 1,ik  

where «k1 > 1 may be considered as self-braking 
assurance factor» [4]. 

From (3) B.L. Veits comes to a conclusion: «Sei-
zure at brake release mode excluding any motion at 
any external moment (the so-called second order 
self-braking) takes place upon the condition 

    *
2 1/ 1ik , 

where 2 1k  — self-braking assurance coeffici-
ent» [4].  

Paying attention to similarity of expressions (2) 
and (3), instead of three loss characteristics used 
let’s introduce the following one: braking parame-
ter of i-link standstill 0

i  as opposite to the ratio of 
elementary works of internal resistance  iA  and 

 iA  of driving forces: 

       0 ( / ).i
i i iA A   (4) 

Let’s obtain the range of this factor. As elemen-
tary works in the numerator and denominator of 
ratio (4) are of different signs, the ratio is always 
negative. Thus, parameter 0

i  is always positive. 
Equality of this parameter to zero is impossible as 
resistance to motion in kinematic pairs always ex-
ists and the numerator of (4) is never zero. At the 
same time resistance forces elementary work at 
standstill condition can’t exceed the work of driv-
ing forces, thus numerator of this expression can’t 
be greater than the denominator. Thus, standstill 
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braking parameter may vary within the limits 
  00 1.i  While calculating resistance force work, 

formal value of upper limit of standstill braking 
parameter, characterizing its assurance   0 1,i it  
may be obtained substituting real value of force 
friction by its maximal value expressed in accord-
ance with Amonton’s law. The greater standstill 
braking parameter (exceeding 1), the greater is the 
assurance value. 

Thus, for a given state of mechanism the link 
providing braking is the one for which standstill 
braking parameter complies with  0 1i  inde-
pendently of its position and driving force magni-
tude. Existence of braking link in a mechanism 
makes the whole mechanism self-braking for given 
mode of operation. 

In accordance to standstill braking parameter 
let’s introduce braking parameter of i-link motion 
as opposite to the ratio of internal resistance forces 


iA  and driving forces works  :iA  

      / .i i iA A  

This parameter differs from similar expres-
sion (4) by the following: works at the final dis-
placement are being calculated instead of elemen-
tary works, the interval of integration should be 
rather great; while calculating friction forces work 
standstill friction coefficients are being replaced by 
motion friction coefficients. 

Deterministic approach to important initial pa-
rameter — sliding friction coefficient — is typical 
for the known methods of self-braking gear analy-
sis. It means that a gear drive designed in this way 
provides workability at forward run and braking 
mode at reverse run for given interval range of fric-
tion coefficient. Meanwhile this coefficient is a 
random value, thus all dependencies containing it 
are probabilistic. 

Based on probability method let’s evaluate self-
braking capability of cylindrical gearing consisting 
of pinion and wheel. For this purpose let’s find the 
value of helix angle 1  of the pinion, which pro-
vides self-braking for a given probability value P. 
Let’s introduce supplementary function B [9]: 

      
2 2

1 1; sin ,
cosb b

b
B f

f
 (5) 

where f is sliding friction coefficient of engage-
ment; b  is helix angle at base circumference. 

Let’s consider function B (5) as a function of a 
random value f. Let’s assume that random value is 
in accordance with normal law of distribution, it 
has expectancy  0( )M f f  and mean-square devia-

tion ( ).f  To find the necessary angle let’s expand 
function B in a Taylor series in accordance with 
D.N. Reshetov’s method [18] leaving the first two 
items: 
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Then angle P  corresponding to given probability is 

     arctan ( ) ( ) ,P PM B u B  (6) 

where M(B) is mathematical expectation of B func-
tion. 

     
2 2

0

1 1sin ,
cosb

b
M B

f
 (7) 

where Pu  is normal distribution quantile; ( )B  is 
mean quadratic deviation of B function, 

     



2

0 2

max minsin .
16 1

cos

b

b

f fB
f

 (8) 

For geometry analysis of cylindrical self-braking 
gearing pinion helix angle at reverse run is as-
sumed greater then angle P  by :  
    1 .y P  (9) 

If   increases, braking reliability also increases 
due to some angle allowance. 

In a similar way the expression for breaking al-
lowance t may be made linear. Considering only 
sliding friction it takes the form of 

     
    

 
1 1

1 0 0
tan tan

; ; ,
cos cos

ty ty
ty b

b b
t f f f f  

where  1ty  is profile angle at the end section on the 
circumference of arbitrary radius 1yr . 

Then braking allowance is defined by 

 
      

1
0

tan max min .
cos 6

ty
P

b

f ft f u  (10) 

Let’s illustrate the dependencies by numerical 
example. Let min 0.076;f  max 0.124;f  

0  0.1.f  The task is to evaluate braking margin 
assuming probability P = 0.99. 
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For standard wheel profile angle ny  = 20° at 
normal cross-section helix angle in accordance 
with self-braking condition [9] must be less than 
82°50'. Taking  2y  = 82°, b  = 68°31'. Based on 
self-braking condition   1 86 26 '.y  Let’s assume 
  1 86 30 '.y  In accordance with (7) and (8) ex-
pectation and mean square deviation of B function 
are: M(B) = 9.646;   B  = 0.718. 

Probability P = 0.99 corresponds to Pu  =  
= –2.326 [18], then in accordance with (6) helix 
angle P  = 84°57', that provides self-braking for 
given probability. Difference between this angle 
and the assumed value of  1y  is obtained from (9): 
  = 1°33'. 

Angle  1ty  = 81°04' corresponds to the accept-
ed value  1y . Braking allowance corresponding to 
given probability is obtained from (10): t = 1.413. 
Similar calculation results for different probabili-
ties are given in Table 2, corresponding diagrams 
in Figure. From the diagrams it is visible that if 
necessary probability increases, P  increases. It 
also leads to decrease of difference   and braking 
allowance t. 

CONCLUSIONS 
1. Self-braking mechanisms form no separate 

class of mechanism; self-braking phenomenon may 
take place in any mechanism provided specific 
characteristics of mechanism and kinematic pairs 
operating conditions. 

2. Self-braking criteria are subdivided to geo-
metrical and analytical. The first are obvious, the 
second are applicable for computation. 

3. Efficiency coefficient can’t be neither the cri-
terion of given motion mode self-braking, nor used 
for reliability estimation for the lack of physical 
meaning in the self-braking process. The value op-
posite to the ratio of elementary works of internal 
resistance forces and driving forces may be consid-
ered a correct characteristic of link braking. 

4. Self-braking criterion must consider distribu-
tion law of friction coefficient as random one. Self-
braking reliability evaluation has probability pat-
tern. 
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Pinion helix angle 1  (a), helix allowance   (b) and 
braking allowance t (c) dependencies on probability P  

  

Table 2 
Cylindrical gearing self-braking  

allowance vs. necessary probability 

P Pu  [18] p    t 

0.5000 
0.6000 
0.7000 
0.8000 
0.9000 
0.9500 
0.9600 
0.9700 
0.9800 
0.9900 
0.9950 
0.9960 
0.9970 
0.9980 
0.9990 
0.9995 
0.9999 

0.000 
–0.253 
–0.524 
–0.788 
–1.282 
–1.645 
–1.751 
–1.881 
–2.054 
–2.326 
–2.576 
–2.652 
–2.748 
–2.878 
–3.090 
–3.291 
–3.719 

83°48' 
84°11' 
84°18' 
84°25' 
84°35' 
84°43' 
84°46' 
84°48' 
84°52' 
84°57' 
85°02' 
85°03' 
85°05' 
85°07' 
85°11' 
85°14' 
85°22' 

2°25' 
2°19' 
2°12' 
2°05' 
1°55' 
1°47' 
1°44' 
1°42' 
1°38' 
1°33' 
1°28' 
1°27' 
1°25' 
1°23' 
1°19' 
1°16' 
1°08' 

1.736 
1.701 
1.663 
1.626 
1.558 
1.507 
1.493 
1.474 
1.450 
1.423 
1.378 
1.367 
1.354 
1.336 
1.307 
1.279 
1.219 
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